Behzad-Vizing conjecture and Cartesian-product graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Vizing-like conjecture for direct product graphs

Let (G) be the domination number of a graph G, and let G H be the direct product of graphs G and H. It is shown that for any k 0 there exists a graph G such that (G G) (G) 2 ? k. This in particular disproves a conjecture from 5].

متن کامل

Vizing-like Conjecture for the Upper Domination of Cartesian Products of Graphs - The Proof

In this note we prove the following conjecture of Nowakowski and Rall: For arbitrary graphs G and H the upper domination number of the Cartesian product G H is at least the product of their upper domination numbers, in symbols: Γ(G H) ≥ Γ(G)Γ(H). A conjecture posed by Vizing [7] in 1968 claims that Vizing’s conjecture: For any graphs G and H, γ(G H) ≥ γ(G)γ(H), where γ, as usual, denotes the do...

متن کامل

The reliability Wiener number of cartesian product graphs

Reliability Wiener number is a modification of the original Wiener number in which probabilities are assigned to edges yielding a natural model in which there are some (or all) bonds in the molecule that are not static. Various probabilities naturally allow modelling different types of chemical bonds because chemical bonds are of different types and it is well-known that under certain condition...

متن کامل

Secret Sharing Based On Cartesian product Of Graphs

The purpose of this paper is to study the information ratio of perfect secret sharing of product of some special families of graphs. We seek to prove that the information ratio of prism graphs $Y_{n}$ are equal to $frac{7}{4}$ for any $ngeq 5$, and we will gave a partial answer to a question of Csirmaz cite{CL}. We will also study the information ratio of two other families $C_{m}times C_{n}$ a...

متن کامل

Connectivity of Cartesian product graphs

Use vi , i , i , i to denote order, connectivity, edge-connectivity and minimum degree of a graphGi for i=1, 2, respectively. For the connectivity and the edge-connectivity of the Cartesian product graph, up to now, the best results are (G1×G2) 1+ 2 and (G1×G2) 1+ 2. This paper improves these results by proving that (G1×G2) min{ 1+ 2, 2+ 1} and (G1×G2)= min{ 1+ 2, 1v2, 2v1} ifG1 andG2 are conne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2002

ISSN: 0893-9659

DOI: 10.1016/s0893-9659(02)00042-3